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ABSTRACT: In this paper, we obtain some 
special types of functions by integrating 
Daubechies wavelets which are differentiable and 
compactly supported. The resulting functions are 
used as Galerkin basis functions for numerical 
solution of differential equations. Theoretical and 
numerical results are obtained for elliptic problems 
of fourth order with various types of boundary 
conditions. Optimal error estimates are also 
obtained. Comparison of solutions with simple 
finite difference method suggests that for this types 
of problems, the present method will provide a 
better alternative to other classical methods. The 
methodology can be generalized to 
multidimensional problems. 
Keywords: Wavelet; Numerical Solution; 
Boundary Value Problem; Galerkin Method; Finite 
Difference Method  
 

I. INTRODUCTION 
In this paper, we study numerical solution 

of differential equations (DE) by using wavelets. 
Wavelets in our consideration are compactly 
supported Daubechies wavelets [5] which are 
differentiable. Since these functions combine 
orthogonality with localization and scaling 
properties, it is a very attractive idea to apply these 
functions to numerical solution of DE problems. 

To discretize a DE problem by Wavelet-
Galerkin method, the Galerkin basis is constructed 
from orthonormal bases of compactly supported 
wavelets which can be done in a number of ways. 
If wavelets are used in a direct way in such 
construction, due to lack of regularity, “low order” 
wavelets cannot be used and higher order wavelets 
result in tedious computations. Also, in this 
approach, setting of the boundary conditions is 
somewhat difficult. We can get rid of the 
difficulties, if we use a different approach where 
Galerkin basis functions are constructed by 
obtaining integrals of Daubechies functions in such 
away that the resulting functions satisfy various 
types of boundary conditions. Also, in this 

approach, one can pursue the solution process in 
higher dimension without computing the 
connection coefficients. However, in this approach, 
the resulting bases will not satisfy the 
multiresolution properties of wavelets which are 
satisfied by the bases in direct approach. In the 
present paper, we construct Galerkin basis 
functions for fourth order boundary value problems 
in any arbitrary  domain (a,b) as follows:  
(i) Shift the support of the wavelet from (0, 2N-1) 
to (a, b), where N is the order (or genus) of the 
wavelet. 
(ii) Take the restrictions of dilates of translated 
scaling functions to (a, b).  
(iii) obtain integrals of the functions taken in (ii) in 
(a,b) in a such a way that they satisfy the 
homogeneous form of the essential boundary 
conditions of the problem.  

Fourth order problems can be solved by 
variational methods in different formulations such 
as (i) conventional formulation, (ii) Lagrange 
multiplier formulation, (iii) penalty function 
formulation, and (iv) mixed formulation. The 
details can be seen in Reddy [13]. The  mixed 
formulation involves rewriting the given fourth 
order equation as a pair of second order equations 
by introducing secondary dependent variables. This 
decomposition of a higher order equation into a 
pair of lower order equations enables one to seek 
approximation in lower order (Sobolev) spaces. 
However, in this paper, we use the conventional  
formulation.  

 We compute numerical results and 
examine the convergence rates which are found to 
be better in comparison to finite difference 
solutions.  The method can be generalized simply 
for simple (e, g, rectangular in two dimensions) 
domains in higher dimensions. In case of complex 
geometric domains, the wavelet method can be 
applied by combining with fictitious domain 
methods as in Wells and Zhou [17] or in Glowinski 
et al [8]. All the computations in this paper are 
done in MATLAB 6.1. The rest of the paper is 
organized as follows:  
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Section 2: Wavelet Integrals and Their 
Approximation Properties  
Section 3: The Wavelet-Galerkin Method  

Section 4: Numerical Results  
Section 5: Conclusion  

 
 

II. WAVELET INTEGRALS AND THEIR APPROXIMATION PROPERTIES 
2.1   Basic Properties of Daubechies Wavelets   
Here we briefly recall the basic properties of Daubechies compactly supported wavelets. For details, we refer [5, 
14].  
For a positive integer   , consider two functions , L2 (R)  defined by 

                                 
k

k
k

k kxbxkxax ),2()(,)2()(                                (2.1) 

where 12  NS  and Zkka }{   and Zkkb }{    are two sequences such that 0 kk ba  

for },....1,0{ Sk  and satisfying some specific properties [5]. The functions   and   are called dbN  scaling 
function and dbN  wavelet function respectively which are compa-ctly supported with supp( )=supp( )=

],0[ S . These functions are available in wavelet toolbox of MATLAB 6 for 451  . They satisfy the 
following properties: 
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The translations and dilations of   and   are defined as 
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kn                           (2.3) 

 
for Zkn , . 
Now we define  
 
                                       2LVn  -closure(span { }).:, Zkkn                                       (2.4) 
 
If nP  be the orthogonal projection of )(2 RL  onto ,nV  then we have  
 
                                                      

n
nVRL ,)(2                                                           (2.5)           

in the sense that  
 
                                                 ffPn    as  .n                                                   (2.6)                             

                                         
2.2   Approximation of Function Spaces Using 
Wavelet Integrals  

In this subsection, integrals of Daubechies 
scaling functions (the wavelet integrals) are used to 

approximate different function spaces (Sobolev 
spaces) useful for numerical solution of DE 
problems and we construct finite dimensional 
subspaces of these function spaces. 
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We recall that for an open interval (a, b) and for an integer ,1m  the space  

                                           )},(':),({),( 11 baHubaHubaH mmm                          (2.7)       
 
      is called the Sobolev space of order m, which is a Hilbert space with inner product m .,.  given by  
 
                                                  10 ,,,  mm vuvuvu                                  (2.8)  

where  ,, 0 
b

a

dxuvvu  is the inner product on  ).,(2 baL  

Here we define the following subspaces of  ),( baH m  which will be in use for the solution of DE problems in 
this paper.   
                                           },0)()(:),({),(0  buaubaHubaH mm   

                                           }.0)(')(:),({),(  auaubaHubaH mm  
Now the following statement can be implied by Theorem 1.1 in [7] which provides the basis of our 
approximation problem.  

If   be the dbN  scaling function, then there exists an integer m, ,0 Nm   such that the Sobolev 

space ),( baH m  can be approximated by the restrictions of translates and dilates of   to ),( ba  and hence 

),(1 baH m  can be approximated by their integrals.      
      We shift the support of   from [0,S] to [a, b] by using the transformation  
 

                                                              ax
S

aby 


                                                 (2.9) 

 
Let                                        :{ ZkI n  supp }),()( ,  bakn                                (2.10)                      
 
     Considering nV as defined in (2.4), we define ),( baVn  to be the set  of restrictions of all functions in nV  to 

).,( ba   In fact, we take  

                                          ),( baVn span }:|{ ),(, nbakn Ik                                         (2.11)          

The space ),( baVn , ,0n  is a finite dimensional closed subspace of ),( baH m  and by 

Proposition 4.2 in [18], a basis of ),( baVn  can be taken as 

                                       }121:),({ ,  SkSbaV n
nkn                                      (2.12) 

 
For ),,(, baVnkn   we define the spaces ),(0 baS n  and ),( baS n

  as 
 
(i)  ),(0 baS n span },:{ , nkn Ik   where 
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and 
 
(ii)   ),( baS n span },:{ , nkn Ik     where 
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                                          
x

a
knknkn aaxdssx )()()()( ,,,                                     (2.14) 

 
Since ),( baVn  is a finite dimensional subspace of ),,( baH m  therefore the spaces 

),(0 baS n  and ),( baS n
 are finite dimensional subspaces of ),(1

0 baH m  and ),(1 baH m
  

respectively  whose bases can be taken as 
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respectively. 
 
Remark 2.1: Sk 1  is excluded in the above bases due to the fact that the set 

}121:{ ,  SkS n
kn  is linearly dependent and the set }122:{ ,  SkS n

kn is linearly 
independent. 
        Figure 2.1 shows the pictures of the basis functions for )1,0(0

nS and )1,0(
nS and their derivatives for 

3N  and .1n  
 
 

 
 

 
Figure 2.1: Basis funs and their derivatives for ଵܵ

଴(0, 1) and ଵܵ
ି(0, 1) for N=3



 

 
International Journal of Advances in Engineering and Management (IJAEM) 
Volume 2, Issue 4, pp: 324-331            www.ijaem.net              ISSN: 2395-5252 
                                      

 
 

 

DOI: 10.35629/5252-0204324331     | Impact Factor value 7.429   | ISO 9001: 2008 Certified Journal    Page 1 

III. THE WAVELET-GALERKIN 
METHOD 

In this section, we discuss the 
methodology for Wavelet-Galerkin solution of 
linear fourth order boundary value problems using 
the basis functions obtained in the last section. Two 
types of boundary conditions corresponding to the 

approximating spaces ),(0 baS n  and ),( baS n
  are 

considered. Using numerical experiments in the 
next section, we shall show how  the present 
algorithm gives fast solutions to DE problems. We 
shall also compare the convergent rates with finite 
difference method (FDM) which shows that the 
present  algorithm is superior over FDM. 

 
3.1   Formulation of the Problems  
The problems to be discussed in this paper are of the form:  

)()())(( xfuxux                                            (3.1) 
with the boundary conditions: 
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and 
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We assume here that ),(2 baLf   and the coefficients   and   are differentiable in (a,b).  
To solve a DE problem of the above type by Galerkin method, the problem is first converted into a linear 
variational (weak) problem:   

                                                 





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Hvallfor F(v),v)A(u,
thatsuchHuFind

                                  (3.4) 

where H  is a Hilbert space, (.,.)A  a bilinear form on H  and (.)F  a linear functional on H .  By 
Lax-Milgram Lemma [4], problem (3.4) posseses a unique solution, if (.,.)A  is continuous and H -elliptic and 

(.)F  is continuous. Then we find a family }{ nH  of finite dimensional closed subspaces of H and problem 

(3.4) can be approximated on }{ nH as  
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Now, the above two problems have the variational form:  
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where (.,.)A is defined by 
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                                           
b

a

vuAavdbvdfvdxvF ),()()()( 012                           (3.8) 

 
and,  (ii)      for problem (3.1)-(3.3),  ),(),,( 210

2 axccubaHH     and 
 

                                           
b

a

vuAbvdbvdfvdxvF ),()()()( 021                             (3.9) 

 
Sufficient conditions for the existance of unique solutions of both the above problems consist of  
 

                                           )(0 x    and      )(0 x                         (3.10) 
 

for positive constants    .,,,   

 Remark 3.1: Condition (3.10) is a sufficient condition. Actually,   can be negative or zero. Also, f  can be 

less regular than 2L  function.  
 
3.2   Approximate Problems and Their Solution  
Taking ,3N  let   be the dbN  scaling function. Then we can approximate the above problems as  

                                          








nnnnn

nnnn

HvallforvFvwA
Hwwuu

),(),(
,,0                                 (3.11) 

where ),(0 baSH nn   for problem (3.1)-(3.2),  and  ),( baSH nn
  for problem (3.1)-(3.3), where the 

spaces are as defined in Section 2.  
 
 
Theorem 3.1 (Error Estimate):  Let u  be the solution of any of the above problems 
 and nu the solution of the approximate problem (3.11). Then for ),,( baHu N  we have 

                                         2,1,0,|||| 1   mhCuu mN
mmn                                     (3.12) 

where Nh n ,2  is the order of the wavelet used and mC  are positive constants. 
Proof:  For proof, ref. [18] can be seen. 
 
Remark 3.2: The convergence of the Wavelet-Galerkin method becomes slower as 
the length of the interval (domain) increases.  
 
 
Now,  let  

                                                           



p

j
Sjnjnn cw

1
1,,                                           (3.13)  

produces the solution of the approximate problem (3.11) at resolution level 0n , where 22  SSp n . 

Using Galerkin method to this,  we get a system of linear equations in p unknowns :,...,1,, pjc jn    

                                                                 FcA                                                     (3.14) 
where A and F are the stiffness matrix and the force vector respectively. The solution of this system of 
equations gives rise to the approximate solution of the actual boundary value problem.  
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As usual, we have to apply numerical quadratures to find the matrix elements jiA ,  and the vector 

elements iF . Indeed, we need not go through numerical differentiation as the derivatives of the basis functions 
are the interpolated scaling functions themselves, with a little difference. This also prevents from computing the 
connection coefficients for higher dimensional problems which must be done for accuracy in direct approach. 

With a little exception, the matrix A here is full and the computation of all the 2p  elements becomes 
expensive with respect to time. We can overcome this drawback by applying a change of basis. Consider the 
functions 
                                                           knknkn ,1,,                                              (3.15) 

where }{ ,kn  is the actual basis.  Then it is easy to show that the set }{ ,kn  spans nH  and is linearly 

independent and so it forms another basis for nH . Note that for ,20 SSk n   

supp )( ,kn  supp )( '
,kn supp )( 1,  kn supp ).( ,kn  

So all but )23(1  NNS  of kn,  and '
,kn  are locally supported in ],[ ba  which shows that the new 

basis preserves the boundary conditions. Figure 3.1 shows the pictures of the modified basis functions for 
)1,0(0

nS  and )1,0(
nS  and their derivatives for 3N  and .1n  

     Remark 3.3: The matrix A is already sparse if 0  and in this case, we need not apply any change of 
basis.        
      With the modified basis at hand, the stiffness matrix A has some special structures 
depending on the boundary conditions of the problem. The programs must treat these  
structures carefully to save running time. 

The system of equations (3.14) can be solved by using Gaussian elimination 
method or LU factorization method. Since the bilinear form (.,.)A  is symmetric, the matrix A  is symmetric 
and we can reduce the number of operations by using Cholesky method, if .0  For large resolution level n , 
the matrix A  is large and sparse and in that case, we can use iterative methods such as Jacobi method or 
method of conjugate 
gradient. 
 

IV. NUMERICAL RESULTS 
Here, we perform some numerical tests to 

justify the quality of the method presented for the 
solution of fourth order boundary value problems 
in the last section. All the problems are solved by 
using 4,3 dbdb  and 5db scaling functions 
successively at resolution levels n=0, 1, 2 and 3. 
The solutions are compared with the exact 
solutions and 12 , HL  and 2H  norm errors are 
obtained. Also we obtain finite difference solutions 
for comparison with the wavelet solution. 

 Here we do not calculate the scaling 
function   explicitly which can be used from the 
wavelet toolbox of MATLAB with the help of the 
built-in-function wavefun. The function is called as  

wavefunx ][  (‘dbN’, iter); 

where ‘dbN’ refers to the Daubechies 
wavelet type, that is, db3, db4 etc,   and   are 
the associated scaling and wavelet functions 
respectively and iter is the number of iterations in 
discretizing the support ],0[ Sx   to calculate   
and   with a sample of size 

.12,.2  NSSiter  At resolution level ,0n  
the support ],0[ S  (and so the domain ],[ ba ) is 

discretized with a sample of size ..2 Sitern  In 
practice, the choice of iter will affect the accuracy 
of the numerical quadratures and consequently the 
accuracy of the solution. Therefore, considerable 
care must be taken in choosing iter. For the 
evaluation of the matrix elements jiA ,  and the 

vector elements iF , we use Simpson’s quadratures.  
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Test Problem 4.1  
Here we solve the following problem:  

                                                 













0)1(,0)0()(
,1)1(,1)0()(

;10,1sin)1( 4

uuii
uui

xxuu iv 
                             (4.1) 

whose exact solution is given by 
                                                               .1sin)(  xxu                                                   (4.2) 
 

The problem is solved by using 
4,3 dbdb  and 5db  wavelets at resolution levels 

n  =0,1, 2 and 3. Also, we approximate the problem 
by using finite difference method with samples of 
size 12, 24, 48 and 96. The  error for size 12 is 
nearly equal to that for 3db  wavelet solution at 

.0n  We compare the convergence rates of finite 
difference solution and wavelet solutions for 2L  
error in Figure 4.1(a), for 1H  error in Figure 
4.1(b) and for 2H  error in Figure 4.1(c). In Figure 
4.1(c), we can see that the graphs for FD and 3db  

wavelet solutions are (almost) parallel which 
means that they have the same convergence rate. 
We know that the FDM has quadratic rate of 
convergence and so the db3 wavelet solution is 
quadratic (in 2H  norm), which is also predicted 
by Theorem 3.1. In the other cases, the 
convergence rates of wavelet solutions are higher 
than that of finite difference solution in all the three 
norms. The 5db  wavelet solution at 3n  is 
affected by roundoff errors. The linear system of 
equations for this problem is solved by using 
Gaussian elimination method. 

       
 

 
 
 

Figure 4.1(a): Test Problem 4.1. Decay in ܮଶ error with increasing resolution 
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Figure 4.1(b): Test Problem 4.1. Decay in ܪଵ error with increasing resolution 
 

 
Figure 4.1(c): Test Problem 4.1. Decay in ܪଶ error with increasing resolution 
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Test Problem 4.2 
Here we solve the following problem:  

                                          













3
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)2(,0)2()(
,)1(,1)1()(

;21,1sin)1(






uuii
uui

xxuu iv

                                    (4.3) 

whose exact solution is given by 
                                                           .1sin)(  xxu                                                       (4.4) 

As for the last problem, this problem is 
also solved by using 4,3 dbdb  and 5db  
wavelets at resolution levels n = 0, 1, 2 and 3. Also, 
we approximate the problem by using finite 
difference method with samples of size 18, 36, 72 
and 144. The 2L  error for size 18 is nearly equal to 
that for 3db  wavelet solution at n = 0. We 
compare the convergence rates of finite difference 
solution and wavelet solutions for 2L  error in 
Figure 4.2(a), for 1H  error in Figure 4.2(b) and 
for 2H  error in Figure 4.2(c). As in the last 
problem, Figure 4.2(c) verifies that 3db  wavelet 
solution is quadratic in 2H  norm, which is also 
predicted by Theorem 3.1. All the three figures 
justify the supremacy of the wavelet solutions. The 

5db  wavelet solution at 3n  is affected by 
roundoff errors. For this problem also, the system 
of linear equations is solved by using Gaussian 
elimination method. 

 
V. CONCLUSION 

In this paper, we have been making 
attempts to construct suitable basis functions, for 
Galerkin solutions of one dimensional elliptic 
problems of fourth order with various types of 
boundary conditions, from Daubechies scaling 
functions. A similar procedure for second order 
problems has been discussed in the authors’ paper 
[6]. Instead of scaling functions, wavelet functions 
can also be employed. The comparison of the 
solutions with FDM indicates that for these types 
of problems, wavelet method is superior over the 
other classical methods. The methods and 
techniques described here can be generalized to 
multidimensional problems by combining with 
fictitious domain methods as in Wells and Zhou 
[17] or in Glowinski et. al. [8].  
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Figure 4.2(a): Test Problem 4.2. Decay in ܮଶ error with increasing resolution 
 

 
 
 

Figure 4.2(b): Test Problem 4.2. Decay in ܪଵ error with increasing resolution 
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Figure 4.2(c): Test Problem 4.2. Decay in ܪଶ error with increasing resolution 
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